Search results for " Heterogeneous Catalysis"

showing 10 items of 23 documents

Bismuth-Catalyzed Growth of SnS2 Nanotubes and Their Stability

2009

Materials scienceChalcogenidesheterogeneous catalysis nanotubes tin vls processchemistry.chemical_elementNanotechnologyGeneral ChemistryCatalysisBismuthCatalysisnanotubesvls processChalcogenides; heterogeneous catalysis; nanotubes; tin; vls processheterogeneous catalysischemistryChemical engineeringtinChalcogenides
researchProduct

Interesterification of rapeseed oil catalysed by a low surface area tin (II) oxide heterogeneous catalyst

2018

Abstract The interesterification of rapeseed oil was performed in a batch reactor using for the first time low surface area massive tin(II) oxide as heterogeneous catalyst and methyl acetate as acyl acceptor. The effect of reaction temperature, methyl acetate to oil molar ratio and catalyst loading on the performances of the process were investigated. Yields in fatty acid methyl esters (FAMEs) and triacetin (TA) up to 90% and 70% respectively, were achieved after 4 h of reaction time at 483 K in the presence of 0.69 mol of SnO per mole of rapeseed oil using a methyl acetate to oil molar ratio of 40. Quite interestingly, the catalyst performances improved when water was added to the reaction…

InteresterificationInteresterified fatMethyl acetate020209 energyGeneral Chemical EngineeringMethyl acetateBatch reactorEnergy Engineering and Power Technology02 engineering and technologyHeterogeneous catalysisCatalysischemistry.chemical_compoundHeterogeneous catalysi0202 electrical engineering electronic engineering information engineeringChemical Engineering (all)TriacetinBiodieselBiodiesel; Heterogeneous catalysis; Interesterification; Methyl acetate; Tin oxide; Chemical Engineering (all); Fuel Technology; Energy Engineering and Power TechnologyHeterogeneous catalysisSettore ING-IND/27 - Chimica Industriale E TecnologicaTin oxideTin oxideFuel TechnologychemistryBiodieselNuclear chemistry
researchProduct

Heterogeneous vs Homogeneous Palladium Catalysts for Cross-Coupling Reactions

2012

A large number of immobilized-Pd-catalysts for cross-coupling reactions have been introduced in the last decade. Are the observed catalyzed reactions truly heterogeneous or are they homogeneous due to leached palladium? This account critically addresses the leaching issue by selectively referring to some of the newly developed catalytic systems in an attempt to evaluate said systems based on uniform criteria. The report is concluded by identifying the relevant chemical and structural challenges in the field.

Chemistrycross-coupling heterogeneous catalysis immobilization palladium parallel synthesisOrganic ChemistryInorganic chemistrychemistry.chemical_elementHeterogeneous catalysisCatalysisCoupling reactionCatalysisInorganic ChemistryChemical engineeringHomogeneousLeaching (metallurgy)Physical and Theoretical ChemistryPalladium
researchProduct

Heterogeneously catalyzed Suzuki-Miyaura conversion of broad scope

2012

The reaction tolerates a broad range of functional groups in the coupling partners and is usually performed in solution under homogeneous conditions at T ¢ 60 uC using 2–3 mol% catalytic amounts. The catalyst is often a Pd(0) complex with triarylphosphane ligands. 2 The catalytic cycle (Scheme 2) begins with the oxidative addition of an aryl halide to a Pd(0) species formed in situ to form an arylpalladium(II) halide intermediate. 3 Chloroarenes, especially nonactivated aryl chlorides, are notoriously less reactive due to the stability of the C–Cl bond (the relative reactivity of Ar–X is correlated to the respective bond dissociation energy: Ph–Cl: 96 kcal mol 21 ,P h–Br: 81 kcal mol 21 ,P …

chemistry.chemical_classificationGeneral Chemical EngineeringAryl halideArylchemistry.chemical_elementHomogeneous catalysisGeneral ChemistryOxidative additionCatalysiscross-coupling heterogeneous catalysis palladium Suzuki–Miyaurachemistry.chemical_compoundchemistryCatalytic cycleOrganic chemistryReactivity (chemistry)Palladium
researchProduct

Multifunctional halloysite and hectorite catalysts for effective transformation of biomass to biodiesel

2023

Halloysite surface was modified with tetrabutylammonium iodide, and then the obtained nanomaterial was used as support for ZnO nanoparticles. After characterization, the nanomaterial was used as a catalyst for fatty acid methyl esters (FAMEs) production. The recyclability of the nanomaterial was also investigated, and the optimization of reaction conditions by the design of experiments approach was performed as well. In addition, the synthesized nanomaterial was tested as a catalyst for FAME production from a series of waste lipids affording biodiesel in moderate to good yields (35–95%), depending on the matrix. To fully exploit the feasibility of clay minerals as catalysts in biodiesel for…

Clay minerals Heterogeneous catalysis Fatty acid methyl esters Waste lipids ZnO nanoparticlesSettore CHIM/06 - Chimica Organica
researchProduct

Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al2O3

2013

The effect of pre-reduction in solution with chemical reagents on the catalytic performance and catalyst properties of Pd/carbon catalysts was systematically investigated with a multitechnique approach. The results are critically discussed in comparison to those recently obtained on analogous Pd/alumina catalysts. It was proved that the Pd phase on the carbon surface is characterized by a high mobility, opposite to what occurs on alumina. As a result, the Pd particles on carbon aggregate together during pre-reduction, with a consequent decrease in available metal surface. Pd particles remain aggregated also in reaction conditions; the decreased Pd dispersion negatively affects the catalyst …

characterization techniqueCO chemisorptionInorganic chemistryPd-based catalystchemistry.chemical_elementTPRHeterogeneous catalysisPd/CarbonCatalysisCatalysisMetalCharacterization techniquesCatalyst pre-reductionTemperature-programmed reductionX-ray absorption spectroscopymetal nanoparticlein situPd-based catalystsPd/aluminaSAXSGeneral ChemistryXANESSmall Angle X-ray ScatteringX-ray Absorption SpectroscopyPd/Carbon; Pd/alumina; metal nanoparticle; catalysis; Catalyst pre-reduction; in situ; SAXS; XANES; Pd-based catalysts; heterogeneous catalysis; Characterization techniques; Temperature-programmed reduction; TPR; CO chemisorption; TEM; X-ray absorption spectroscopy; Small Angle X-ray Scatteringheterogeneous catalysischemistryReagentvisual_arttemperature-programmed reductionvisual_art.visual_art_mediumTEMheterogeneous catalysiSmall Angle X-ray SpectroscopyDispersion (chemistry)Carbon
researchProduct

Imidazolium-Functionalized Carbon Nanohorns for the Conversion of CO2 Unprecedented Increase of Catalytic Activity after Recycling

2017

Carbon nanohorns (CNHs) were selected as a novel catalytic platform for the design of imidazolium based hybrid materials able to promote the conversion of carbon dioxide into cyclic carbonates. Several heterogeneous catalysts were prepared using a one-step procedure based on the radical polymerization of various bis-vinylimidazolium salts in the presence of pristine CNHs. The as-synthesized materials were tested for the fixation of CO2 into epoxides. The excellent catalytic performances were evaluated in terms of turnover number and productivity. The versatility of the above hybrids was proved using several epoxides as substrate. Catalysts recyclability was successfully verified for several…

carbon dioxide conversion carbon nanohorns cyclic carbonates heterogeneous catalysis imidazolium saltsSettore CHIM/06 - Chimica Organica
researchProduct

Advances in organic and organic-inorganic hybrid polymeric supports for catalytic applications

2016

In this review, the most recent advances (2014–2016) on the synthesis of new polymer-supported catalysts are reported, focusing the attention on the synthetic strategies developed for their preparation. The polymer-supported catalysts examined will be organic-based polymers and organic-inorganic hybrids and will include, among others, polystyrenes, poly-ionic liquids, chiral ionic polymers, dendrimers, carbon nanotubes, as well as silica and halloysite-based catalysts. Selected examples will show the synthesis and application in the field of organocatalysis and metal-based catalysis both for non-asymmetric and asymmetric transformations.

Materials sciencePharmaceutical ScienceAsymmetric catalysiHomogeneous catalysisNanotechnologyReviewCarbon nanotube010402 general chemistryHeterogeneous catalysis01 natural sciencesAnalytical ChemistryCatalysislaw.inventionlcsh:QD241-441Heterogeneous catalysiOrganocatalysilcsh:Organic chemistrylawDendrimerDrug DiscoveryOrganic-inorganic hybridOrganic chemistryorganocatalysisPhysical and Theoretical ChemistryPolystyrenechemistry.chemical_classification010405 organic chemistryMedicine (all)Organic ChemistryEnantioselective synthesisasymmetric catalysisPolymerAsymmetric catalysis; Heterogeneous catalysis; Metal catalyst; Organic-inorganic hybrid; Organocatalysis; Polystyrene; Medicine (all); Organic ChemistrySettore CHIM/06 - Chimica OrganicaMetal catalyst0104 chemical sciencesheterogeneous catalysischemistryChemistry (miscellaneous)OrganocatalysisMolecular Medicine
researchProduct

Single-Walled Carbon Nanotube–Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis

2016

We report the synthesis and catalytic properties of single-walled carbon nanotube-polyamidoamine dendrimers hybrids (SWCNT-PAMAM), prepared via a convergent strategy. The direct reaction of cystamine-based PAMAM dendrimers (generations 2.5 and 3.0) with pristine SWCNTs in refluxing toluene, followed by immobilization and reduction of [PdCl4](2-), led to the formation of highly dispersed small palladium nanoparticles homogeneously confined throughout the nanotube length. One of these functional materials proved to be an efficient catalyst in Suzuki and Heck reactions, able to promote the above processes down to 0.002 mol % showing a turnover number (TON) of 48 000 and a turnover frequency (T…

Nanotubepalladium nanoparticleMaterials scienceGeneral Physics and AstronomyC-C cross coupling; carbon nanotubes; heterogeneous catalysis; palladium nanoparticles; PAMAM dendrimers; TEM; Materials Science (all); Engineering (all); Physics and Astronomy (all)02 engineering and technologyCarbon nanotubePAMAM dendrimers010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysislaw.inventionPhysics and Astronomy (all)Engineering (all)Suzuki reactionlawDendrimerOrganic chemistrypalladium nanoparticlesGeneral Materials ScienceC-C cross couplingcarbon nanotubePAMAM dendrimercarbon nanotubesGeneral EngineeringSettore CHIM/06 - Chimica Organica021001 nanoscience & nanotechnology0104 chemical sciencesTurnover numberheterogeneous catalysisChemical engineeringTEMheterogeneous catalysiMaterials Science (all)0210 nano-technologyHybrid materialACS Nano
researchProduct

Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators.

2021

The catalytic performance of metal-organic frameworks (MOFs) is related to their physicochemical properties, such as particle size, defect-chemistry and porosity, which synthetic control can be potentially achieved by coordination modulation. By combining PXRD, 1HNMR, FT-IR, N2 uptake measurements we have found insights that the different types of defects (missing linker or missing clusters consequence of the spatial distribution of missing linkers, and the combination of both) could be controlled by the type of modulator employed. We show that the molar percent of defects, either as missing linkers or as part of missing cluster defects, is related to the modulator’s acidity and subse…

Molecular diffusionMetal-Organic Frameworks Defects Coordination modulation Heterogeneous Catalysis010405 organic chemistryChemistry010402 general chemistry01 natural sciences0104 chemical sciencesCatalysisInorganic ChemistryChemical engineeringCluster (physics)Particle sizePorosityMesoporous materialLinkerPowder diffractionDalton transactions (Cambridge, England : 2003)
researchProduct